Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants

COMPASsCO₂

CREEP RESULTS OF STATE-OF-THE-ART MATERIALS IN CO₂ AND AIR

Christoph Grimme, Emma White, Ceyhun Oskay, Michael Kerbstadt, Mathias Galetz

> Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

> > SUGIMAT

COMPASsCO2 Second Stakeholders Workshop

Next generation advanced materials for particle/supercritical CO₂ heat exchangers

CVŘ Research Centre Řež

ome

JÜLICH Cocas

September 25th, 2023

John Cockerill

DECHEMA

iftung bürgerlichen Rechts

UNIVERSITY^{OF} BIRMINGHAM

Objectives for Tube Material

≻Outer Tube:

- Oxidation, corrosion & wear
 - Accelerated wear testing
 - Characterize materials and coatings to assess performance

Inner Tube:

- Understand the influence of CO₂ on creep behavior
- Compare CO₂ creep data with creep tests performed in air

Creep in heat exchangers

https://www.tcradvanced.com/reformer-tube.html

Creep behavior of alloys

COMPASsCO₂

Testing results on state-of-the-art materials in CO₂ and air

Minimum creep rate

- Creep rupture times usually vary a lot!
- The minimum creep rate is easy to determine and subject to lower deviations
- The minimum creep rate allows for faster comparisons between materials than time to failure

Creep Test of Nimonic PE16 at 700 °C (Literature)

R. C. Lobb Mat. Sci Eng. (1979)

Creep tests in CO₂ @ 700°C

- Test temperature = 700°C
- Results will be compared to tests performed in air by CIEMAT

Material	σ [MPa]	Planned time [h]		
Sanicro 25	300	100		
	240	500		
	220	700		
	200	1000		
IN617B	320	100		
	300	500		
	280	700		
	250	1000		
	550	100		
Haynas 202	500	500		
naynes 202	450	700		
	400	1000		
IN740	550	100		
	500	500		
	450	700		
	400	1000		

Chemical composition [wt%]									
Sanicro 25	Ni	Cr	Со	W	Cu	Nb	Fe		
	25	22.5	1.5	3.6	3	0.5	Bal.		
IN617B	Ni	Cr	Со	Мо	AI	Ti			
	Bal.	22	12	9	1	0.35			
Haynes 282	Ni	Cr	Со	Мо	Ti	AI	Fe		
	Bal.	20	10	8.5	2.1	1.5	1.5		
IN-740	Ni	Cr	Со	Мо	Ti	AI			
	Bal.	24.5	20	0.1	1.35	1.35			

Comparison of minimum creep rate in CO₂ and air

- Comparable Minimum Creep Rates
- Most sigificant difference is present for Sanicro 25

Larson-Miller Parameter of Ni-based alloys

COMPASsCO₂

Degradation mechanisms: Oxidation

Testing results on state-of-the-art materials in CO₂ and air

COMPASsCO₂

- IN-617B

1E-6 1E-7 A-Havnes-28

Degradation mechanisms: γ'-dissolution

Testing results on state-of-the-art materials in CO₂ and air

COMPASsCO₂

-▲— Sanicro 25 -■— IN-740 ●— IN-617B

- Haynes-282

1E-6

Conclusion

- Creep tests in CO₂ led to the formation of Cr-rich oxide scales and internal oxidation of AI
- Depletion of Cr and Al led to dissolution of γ'-precipitates and carbides
- The materials tested show a comparable creep behavior in CO₂ to air

• Outlook: In depth comparison of air data to CO₂ tests

COMPASsCO₂

Thank you!

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. **958418**.

COMPASsCO₂