Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants

COMPASSCO2

DEVELOPMENT OF NEW MATERIALS

COMPASsCO2 Second Stakeholders Workshop

Next generation advanced materials for particle/supercritical CO₂ heat exchangers

Tom Blackburn, University of Birmingham, UK

September 25th, 2023 Hybrid Meeting: Hotel Anker, Marktheidenfeld, Germany & Zoom

Material Candidates for the Heat Exchanger

- State of the Art Materials
- Novel Material Candidates
 - Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
 - Chromium Silicides
 - Coating Procedure
 - Coating Oxidation Performance

Conclusions and Future Prospective

Material Candidates for the Heat Exchanger

- State of the Art Materials
- Novel Material Candidates
 - Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
 - Chromium Silicides
 - Coating Procedure
 - Coating Oxidation Performance
- Conclusions and Future Prospective

State of the Art materials

Materials selected on basis of:

- High Temperature (<900°C external)
- sCO₂ corrosive environment
- High Pressure (25MPa) sCO₂
- Erosive ceramic particles
- Good Thermal conductivity

Steels: P92
Sanicro 25
Nickel: Inconel 740
Inconel 617
Haynes 282
Novel Chromium alloys

Material Candidates for the Heat Exchanger

State of the Art Materials

Novel Material Candidates

- Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
- Chromium Silicides
 - ➢ Coating Procedure
 - Coating Oxidation Performance

Conclusions and Future Prospective

State of the art materials: Mechanical Properties (Tensile Tests)

Source: COMPASsCO2

Small Punch Testing of State of the Art materials

- IN740: higher yield stress
- H282 and IN617 show more ductility
- Similar correlations observed in 3 mmØ and 8 mmØ
- Initial investigation of Cr alloys

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

DP

COD

Stakeholders Meeting September 2023

Material Candidates for the Heat Exchanger

State of the Art Materials

Novel Material Candidates

- Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
- Chromium Silicides
 - ➢ Coating Procedure
 - Coating Oxidation Performance

Conclusions and Future Prospective

Chromium BCC Superalloy

Why Chromium?

[Cr-Si Phase diagram of the Cr-Si system revised by Oka]

Approach 1

BCC-BCC

W-TiFe (A2-B2)1

Stakeholders Meeting September 2023

Cr (A2) strengthened by

ordered bcc precipitates

Fe-NiAl (A2-B2)³

COMPASSCO2

Ti-TiFe (A2-B2)²

Material Candidates for the Heat Exchanger

State of the Art Materials

Novel Material Candidates

- Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
- Chromium Silicides
 - ➢ Coating Procedure
 - Coating Oxidation Performance

Conclusions and Future Prospective

Approach 1: Chromium BCC Superalloy

Phase Diagram

Addition of Fe

K. Ma, T. Blackburn, J.P. Magnussen, M. Kerbstadt, P.A. Ferreirós, T. Pinomaa, C. Hofer, D.G. Hopkinson, S.J. Day, P.A.J. Bagot, M.P. Moody, M.C. Galetz, A.J. Knowles, Acta Materialia 257 (2023) 119183.

Tom Blackburn, PhD Student UoB

Stakeholders Meeting September 2023

Microstructure Cr-5Ni-5AI and Cr-5Ni-5AI-10Fe [1]

[1] K. Ma, T. Blackburn, J.P. Magnussen, M. Kerbstadt, P.A. Ferreirós, T. Pinomaa, C. Hofer, D.G. Hopkinson, S.J. Day, P.A.J. Bagot, M.P. Moody, M.C. Galetz, A.J. Knowles, Acta Materialia 257 (2023) 119183.

Microstructure Cr-5Ni-5AI and Cr-5Ni-5AI-10Fe [1]

Yield Stress

- No significant drop off in strength
- Higher strength over Ni superalloys at 1000°C

Acta Materialia Volume 257, 15 September 2023, 119183

Full length article

Chromium-based bcc-superalloys strengthened by iron supplements

Kan Ma^a, Thomas Blackburn^a, Johan P. Magnussen^a, Michael Kerbstadt^b, Pedro A. Ferreirós^{a c}, Tatu Pinomaa^c, Christina Hofer^d, David G. Hopkinson^e, Sarah J. Day^e, Paul A.J. Bagot^d, Michael P. Moody^d, Mathias C. Galetz^b, Alexander J. Knowles^a 2

This work has been published:

K. Ma, T. Blackburn, J.P. Magnussen, M. Kerbstadt, P.A. Ferreirós, T. Pinomaa, C. Hofer, D.G. Hopkinson, S.J. Day, P.A. Bagot, *Acta Materialia*, 257, **2023**, 119183.

[2]https://reader.elsevier.com/reader/sd/pii/S0921509316314071?token=1949412CCA518C81737CC1B68030E005CF2A0387C33BA5D4FA43B354A00B07F2F311D086BBDC5B7B2ED2454560247724&originRegion=eu-west-1&originCreation=20230223152235 [3]https://reader.elsevier.com/reader/sd/pii/S0966979516300450?token=FBECCA4462F7AB823961272CB29FF8EA3EFD96253210FBB2FD080930E0EB90CFFC76C5AA9D430984A76C7CF847331C51&originRegion=eu-west-1&originCreation=20230306090121

Material Candidates for the Heat Exchanger

State of the Art Materials

Novel Material Candidates

- Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
- Chromium Silicides
 - Coating Procedure
 - Coating Oxidation Performance

Conclusions and Future Prospective

Approach 2: Cr-Cr₃Si

COMPASSC

Approach: Cr-based materials alloyed by silicon

Cr₂O₃ scale for oxidation/carburization resistance, precipitation of hard intermetallic silicides for erosion resistance

Heat treatment 100 h @ 1200°C: diffusion controlled precipitation of Cr₃Si-phase

Fracture pattern after compression test @ 700°C

>Brittleness and manufacturing main challenges > application as coatings

Source: COMPASsCO2

*Patent pending

Newly developed coating process by the slurry technique for applying Cr-Si diffusion coatings

Enrichment of Cr and Si in surface zone to specifically modify the properties

Cr-Si Coatings: Cross-sections

Austenitic steel: Sanicro 25

- Enrichment of Cr and Si in a layer of about 100 µm
- Diffusion layer: high increase of hardness compared to substrate

Ni-based alloy: Inconel 740

- Enrichment of Cr and Si in a layer of about 200 µm
- Diffusion layer: high increase of hardness compared to substrate

Material Candidates for the Heat Exchanger

- State of the Art Materials
- Novel Material Candidates
 - Chromium Nickel Aluminides
 - Coarsening Kinetics
 - High Temperature Compression
 - Chromium Silicides
 - ➢ Coating Procedure
 - Coating Oxidation Performance

Conclusions and Future Prospective

COMPASSCO2

ML high-throughput screening of BCC Cr-alloys

VTT have developed a machine learning (ML) tool for screening large composition spaces rapidly using computational thermodynamics accelerated to find suitable Cr-based alloys

Tom Blackburn, PhD Student UoB Stakeholders Meeting September 2023

State of the art materials identified and mechanically tested

- Cr-NiAl alloys have low coarsening rate & retain high temperature strength, even outperforming some Ni-superalloys
- Cr-Si pack-cementation slurry coating process proving successful, and provides a protective oxidation barrier on SOA Fe/Ni alloys

Ongoing high throughput CALPHAD simulations by VTT, alloys being produced and tested at UoB

Room temperature ductility of Cr continues to be addressed

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. **958418.**

COMPASSCO2 THANK YOU

