Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants

COMPASsCO₂

MATERIALS REQUIREMENTS FOR SCO2 (OXIDATION / CARBURIZATION)

D. NAUMENKO FORSCHUNGSZENTRUM JÜLICH GMBH

COMPASsCO2 Second Stakeholders Workshop

Next generation advanced materials for particle/supercritical CO₂ heat exchangers

Hybrid- physical venue: Hotel Anker, Kolpingstraße7, 97828 Marktheidenfeld, Germany Online: Zoom

September 25th, 2023 11h00 – 15h00 CET No registration fees

Overview of activities in COMPASsCO2 / WP4

Oxidation and corrosion behavior - test program shared between FZJ, CIEMAT and CVR.

Testing in lab. air or CO₂ (technical or high-purity gas) between 600°C and 900°C

Test methods:

- thermogravimetry experiments (FZJ)
- discontinuous testing (CIEMAT)
- cyclic oxidation (FZJ)
- high-pressure autoclave tests in supercritical CO₂ (CVR)

Post-exposure analytical studies:

- optical metallography,
- SEM / EDX (surface and cross-section analysis)
- GD-OES (FZJ)
- XPS (CIEMAT)

Studied candidate materials

Chemical compositions of studied materials (ICP-OES and combustion analysis of C, N)

Alloy	Fe	Ni	Со	Cr	ΑΙ	Мо	Ti	Mn	Si	С	Other
Sanicro 25	41.5	24.2	1.50	23.4	0.03	0.23	0.03	0.56	0.19	0.084	Cu 2.93, Nb 0.5
											W 3.47, N 0.28
Alloy 617	1.03	51.9	11.9	22.1	1.16	9.0	0.39	0.09	0.32	0.076	W 0.32
IN740	0.15	48.0	21.4	25.2	1.35	0.53	1.49	0.30	0.18	0.048	Nb 1.5, <u>Ce 0.12</u>
Haynes 282	0.61	52.5	10.1	18.6	1.50	8.7	2.15	0.05	0.25	0.070	<u>Ce 0.17</u>
P92	84.6	0.34	0.017	9.37	-	0.38	-	0.57	0.22	0.150	W 1.74, V 0.22

Studied candidate materials

Etched optical metallographic cross-sections of as-received alloys

Oxidation Tests

Thermogravimetry data at 900°C (atmospheric pressure)

- Slightly higher mass changes in synth. air and CO₂
- Same ranking of alloys in terms of mass change in both test gases

Cyclic oxidation tests

Mass change (exposure at 900 °C in air or $CO_2(4.5) - 11h$ heat. / 0.5h cool.)

- More extensive scale spallation from Sanicro25 in spite of low scale growth rate
- Increased tendency to scale spallation in CO₂ compared to air (for Sanicro 25 and Alloy 617)

Oxidation Tests

- Good agreement between mass changes and cross-section analysis
- Mass change is correlated with scale thickness and extent of internal oxidation (similar in air and CO₂)

Effect of alloy composition

Materials compositions / wt% measured with ICP-OES

······································											
	Fe	Ni	Со	Cr	AI	Mn	Si	Nb	Ti	Mo	
Sanicro 25	42.6	25.4	1.5	22.3	0.03	0.5	0.2	0.5	-	-	
617B	1.2	54.6	11.9	22.3	1	0.04	0.05	-	0.4	8.2	
740	0.1	49.7	20.6	24.5	1.4	0.3	0.2	1.5	1.4	-	
282	0.2	57.1	10.6	19.6	1.6	0.02	0.04	-	2.2	8.6	

• The extent of internal oxidation increases with increasing alloy AI content

Cyclic oxidation exposure: Ti incorporaton into scale

1000 h at 900 °C in air – 11h heat. / 0.5h cool

Alloy 617

Haynes 282

- Scale growth rate correlates with alloy Ti-content scale thickness increases with increasing alloy Ti content
- Qulitatively similar results obtained in CO₂

Mechanism of Ti-effect

Commercial materials compositions / wt%

	Fe	Ni	Со	Cr	AI	Mn	Si	Nb	Ti	Mo
Sanicro 25	42.6	25.4	1.5	22.3	0.03	0.5	0.2	0.5	-	-
617B	1.2	54.6	11.9	22.3	1	0.04	0.05	-	0.4	8.2
740	0.1	49.7	20.6	24.5	1.4	0.3	0.2	1.5	1.4	-
282	0.2	57.1	10.6	19.6	1.6	0.02	0.04	-	2.2	8.6

- Scale thickness increases with increasing alloy Ti content
- Ti is known to cause so-called p-type doping effect
- *Ti*⁴⁺ substitutes *Cr*³⁺; *Ti*⁴⁺ can be considered to enter the

chromia lattice according to reaction:

 $3TiO_2 \rightarrow 3Ti_{Cr} + V_{Cr}^{\prime\prime\prime} + 6O_0^x$

• Vacancies lead to faster cationic diffusion transport through the scale

Effect of alloy composition on scale adherence

COMPASsCO₂

SEM after 3000h exposure at 900 °C in air

Haynes 282

Sanicro 25

- Oxide scale remained adherent on Haynes 282 after 3000 h cyclic oxidation
- Observations in agreement with mass change data (next slide)

Cyclic oxidation exposure

Mass change (exposure at 900 °C in air or $CO_2(4.5) - 11h$ heat. / 0.5h cool.)

- Higher CTE of Sanicro 25 compared to Haynes 282
- Difference in the oxide microstructure, it is possible that Sanicro 25 has a higher module of elasticity resulting in more stress generation in oxide upon cooling

Mass change (exposure at 900 °C in air or CO_2 (4.5) – 11h heat. / 0.5h cool.)

Commercial materials compositions / wt%

				_	_	_					
	Fe	Ni	Со	Cr	AI	Mn	Si	Nb	Ti	Мо	Ce
Sanicro 25	42.6	25.4	1.5	22.3	0.03	0.5	0.2	0.5	-	-	<0.009
617B	1.2	54.6	11.9	22.3	1	0.04	0.05	-	0.4	8.2	0.028
740	0.1	49.7	20.6	24.5	1.4	0.3	0.2	1.5	1.4	-	0.122
282	0.2	57.1	10.6	19.6	1.6	0.02	0.04	-	2.2	8.6	0.17

N.B. Ce was not specified in nominal compositions of studied alloys

- Presence of minor Ce addition in alloy
- RE enhance oxidation
 resistance
- Act as a sulphur-getter, which prevents formation and oxide adherence loss

WP4 - 4.2 Internal wall corrosion tests

STATUS:

- Corrosion tests at 700°C: Metallographic examination of specimens at 700°C is finishing with the two CO₂ grades
 - Only minor corrosion attack at 700°C, Ti-incorporation into sale

Assembly of the testing device - Supercritical CO₂ Autoclave (ScCAc)

• Tests to be initiated in last quarter of 2023

sCO₂ autoclave for materials testing

Testing conditions: Temperature 700° C Pressure 120 bar Gas purity: I.G. (99.995)

15

Conclusions and outlook

- Selected materials qualified for use in heat-exchangers under lab. air and CO₂
- Degradation rates of Ni-base alloys at 700°C in both environments very low
- Degradation rates at 900°C can be correlated with alloy contents of Ti and Al
- Minor additions of reactive element (Ce) appear to be important in determining long-term oxide scale resistance to spallation
- At atmospheric pressure no substantial increase in degradation in CO₂ compared to lab.air and no carburization observed
- During remaining project period testing under high-pressure (supercritical) CO₂ as well as that of new Cr-based materials (coatings) will be accomplished

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. **958418.**

COMPASSCO2 THANK YOU

