Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants (COMPASsCO₂)

COMPASsCO₂

MATERIALS INNOVATION: NOVEL ALLOYS DESIGN FOR THE EXTREME CONDITIONS OF CST

Tom Blackburn (UoB), Michael Kerbstadt (Dechema)

COMPASsCO2 Final Workshop

Back to the Future: A Forward-Thinking Approach to Concentrating Solar Technologies - Key Takeaways from the COMPASsCO, Project

April 24th, 2025 9h30 – 14h30 CEST

Development of Cr-NiAl

Microstructure + Coarsening
 High Temperature Mechanical Testing
 High Temperature Exposures
 Development of Cr-Cr₃Si
 Diffusion Coatings
 Applications Beyond CSP
 Upscaling
 ICME Alloy Screening
 AI Model

Experimental Model Validation

Chromium BCC Superalloy

Why Chromium?

[Cr-Si Phase diagram of the Cr-Si system revised by Oka]

Approach 1

BCC-BCC

W-TiFe (A2-B2)¹

Tom Blackburn (UoB) and Michael Kerbstadt (Dechema) Final COMPASsCO2 Workshop

COMPASsCO₂

Cr (A2) strengthened by

ordered bcc precipitates

Fe-NiAl (A2-B2)³

Ti-TiFe (A2-B2)²

Cr-NiAl

Tom Blackburn (UoB)

Nano-Scale Precipitate with Low Misfit

Slow Coarsening Kinetics of Cr-Superalloys

Slow Coarsening Kinetics of Cr-Superalloys

Retained Flow Stress at 1000 °C

Grain boundary failure

GB

Sub-scale Small Punch Testing

Pure Chromium

- Attempt to corelate failure to gran structure
- The brittle does not allow the estimation of SP parameters.

 Heat treatment in Ar/5%H₂ removed impurities
 GB NiAl Weakness

In Memoriam

Daniel Plaza 1971-2025 Gone but not forgotten.

We will never forget his great dedication and his daily work in the Mechanical Behaviour Unit for 32 years specially on the small punch testing technique

Diffusion Controlled Parabolic Growth Kinetics CECHEMA

A. S. Ulrich, P. Pfizenmaier, A. Solimani, U. Glatzel, and M. C. Galetz, "Improving the oxidation resistance of cr-si-based alloys by ternary alloying,"
 I. Murris, Y. P. Jacob, V. A. C. Haanappel, and M. F. Stroosnijder, "High-temperature oxidation behavior of chromium: Effect of different batches,"

➢ Reduced mass gain over pure chromium
 ➢ Parabolic growth at 900 and 1000 °C
 → para-linear at 1200 °C
 ➢ Comparable K_p to nickel-based systems
 ➢ Not as resistant as Cr-Cr₃Si

FORSCHUNGSINSTITUT

Non-Protective Cr₂O₃ Scale

Non-protective Cr₂O₃ scale formed
 >Inward diffusion of Oxygen and Nitrogen
 >Reacts with Al → dissolution of B2

Take Home Messages

- Nano-scale coherent precipitates with slow coarsening rate
- Retained high temperature compressive yield stress
- Parabolic growth at 900 and 1000 °C beyond which para-linear kinetics prevail

Ni- and Fe-base: Limited lifetime in harsh heat exchanger environment

 \rightarrow Cr/Si diffusion coatings for extended properties

200 h

Significantly mass

loss after already

T. Galiullin, B. Gobereit, D. Naumenko, R. Buck, L. Amsbeck, M. Neises-von Puttkamer, W.J. Quadakkers, "High temperature oxidation and erosion of candidate materials for particle receivers of concentrated solar power tower systems", Solar Energy 188(2019) 883-889 Si: formation of hard silicide phases
 → erosion resistance

HV of CrSi₈ compared to conventional heat exchanger materials* [1] <u>https://www.materials.sandvik.com</u>, January 2022

[1] <u>Intps://www.inaterials.sandvik.com</u>, January 2022
[2] <u>https://www.azom.com</u>, January 2022
[3] Ulrich, Anke S., et al., Int. J. Refract. Hard Met. 76 (2018): 72-81.

[M.C. Galetz, Coatings for superalloys (2015): 277-296]

Schematic of diffusion coating

Selective oxidation of Cr

 \succ Enrichment of surface region by protective elements (Al, Cr, Si) \rightarrow selective oxidation

State of the art Process: Pack Cementation

Tom Blackburn (UoB) and Michael Kerbstadt (Dechema) Final COMPASsCO2 Workshop

> Challenge: T_m of Cr > 1900°C \rightarrow Cr-Ni-**Si**: ternary eutectic at 1077°C¹

No use of halogenid activators + localised recoating after damage possible

¹E. Lugscheider et al.,*Thermochimica Acta*, vol. 29, no. 2, pp. 323-226, 1979.

²Kerbstadt, M.; Galetz, M.C. Verfahren zur Diffusionsbeschichtung mit einem Cr-Si-haltigen Schlicker. German Patent 2022.

²Patent applied

Cr/Si-coated Cross-Sections

Austenitic steel: Sanicro 25

- Enrichment of Cr and Si in a layer of about 100 µm
- Formation of intermetallic layer

Ni-γ M_6C M_6C 40 μm

*M. Kerbstadt et. al, Materials 16.23 (2023): p. 7480

Ni-based alloy: Rene 80

- Enrichment of Cr and Si in a layer of about 200 µm
- Enriched Ni-γ with Si-rich precipitates

Tom Blackburn (UoB) and Michael Kerbstadt (Dechema) Final COMPASsCO2 Workshop

Oxidation Performance

MINISTERIO DE CIENCIA E INNOVACIÓN Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

21

Erosion Tests at CIEMAT

MINISTERIO DE CIENCIA E INNOVACIÓN

Mn

Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Mo

FerOx-5mm/s-700°C, 250h Uncoated P92

Metall loss + Fe-Oxide formation

Cr/Si-coated P92

22

- Clear beneficial effect of the coating
- > EDS analysis reveals thin oxide layer and only partial loss of the coating

Cr/Si coatings beyond CSP

https://www.pv-magazine.com/2017/09/19/shanghaielectric-acwa-to-build-700-mw-csp-plant-phase-four-ofraschid-al-maktum-solar-park/

https://www.oerlikon.com/balzers/global/de/portfolio/

https://ndtsupply.com/magnetite-inspection-of-superheattubes-in-a-boiler-with-low-frequency-electromagnetictechnique-lfet.html

Cr/Si coatings beyond CSP: hot corrosion environments Na2SO4

Deposition of 4 mg/cm² Na₂SO₄, 900 °C for 300 hours at 0.1 vol.% SO₂ synthetic air

DECHEMA

after 24 hours

after 300 hours

after 300 hours

Salt deposit: Na₂SO₄ 4 mg/cm²

- Uncoated Rene 80: catastrophic corrosion attack within short exposure times
- \succ Cr/Si-coatings: no internal sulfidation or oxidation \rightarrow Al₂O₃-subscale + defined CrS-film

*M. Kerbstadt et al. High Temperature Corrosion of mater. (2024): p.1-13

Cr-Si Coatings: Application beyond CSP

- Sewage sludge combustion
- Corrosion test of P92: 625° C for 5000 h

Samples covered with 10g of combustion ashes

P92/Pack after 5000 h: catastrophic corrosion attack

Cr-Si coating after 5000 h: no corrosion attack visible

> Based on their properties, the coatings have attracted interest especially for turbine applications

> Coatings applied in industrial production during material heat treatment process

High Throughput Modelling Approach

Tom Blackburn (UoB) and Michael Kerbstadt (Dechema) Final COMPASsCO2 Workshop

VTT will develop materials modeling workflows that will assists the experimental partners in realizing Cr-based superalloys with suitable properties

Machine learning accelerated thermodynamic search of Cr-based BCC-B2 superalloys

Computational tool for rapid screening of Cr-based alloys using MLaccelerated computational thermodynamics

Ab-initio predictions of the ductility

- Rice parameter D predicts cleavage vs. dislocation emission at crack tip
- For Cr-based alloys, D increases with valence electron concentration (VEC)

6.5

7.0

5.5

6.0

VEC

5.0

Down selected alloys for experimental synthesis

Alloys synthesized by University of Birmingham

Eight alloys selected for synthesis based on their predicted mechanical properties
 Five out of eight successfully produced Cr-based BCC-B2 microstructure

Mechanical properties of the matrix phase of the alloys

 Yield strength predicted via Maresca– Curtin edge dislocation theory
 Strength linked to solute misfit volume vs. alloy volume

For Cr-based alloys:

- V-W-Mo large misfit
 - Edge dislocation strengthening
- Fe-Co-Mn small misfit
 - Screw dislocation strengthening

Effect of AI is unclear

Mechanical property predictions need further theoretical and experimental assessment

Trapping of GB embrittling elements to precipitate-matrix interfaces?

Finalizing paper on high-throughput screening of chromium-based highentropy superalloys

COMPASSCO

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. **958418.**

COMPASSCO2 THANK YOU

