Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants (COMPASsCO₂)

COMPASsCO₂

PLANT LAYOUT AND STATE-OF-THE-ART MATERIALS SELECTION

Daniel Benitez (DLR)

COMPASsCO2 Final Workshop

Back to the Future: A Forward-Thinking Approach to Concentrating Solar Technologies - Key Takeaways from the COMPASsCO, Project

April 24th, 2025 9h30 – 14h30 CEST Husinec u Řeže, Czech Republic &

Overall Plant Layout

Final COMPASsCO2 Workshop

The cycle should have a very high efficiency, as this is one key requirements of the Work Program funding the project (<u>H2020 LC-SPIRE-08-2020</u>)

- >Literature review of Brayton sCO₂ cycles (also non-solar)
 - Parametric study for 10 Brayton sCO2 cycles and hundreds of parameter combinations
 - Implementation of preliminary component cost models
 - Results published in project Deliverable 1.1 "Process parameters of solar sCO2 Brayton cycle" <u>https://doi.org/10.5281/zenodo.4733988</u>

Brayton cycle selection

10 sCO2 cycles preselected

Daniel Benitez, DLR

Final COMPASsCO2 Workshop

COMPASsCO₂

Brayton cycle selection

Results are not very accurate due to low TRL of sCO2 Brayton cycles

Key data such as component costs, pressure drop and auxiliary power consumption not fully available

Parameters	Particles (high pressure PHX)	Particles (low pressure PHX)	sCO2 (high pressure PHX)	sCO2 (low pressure PHX)
Inlet temperature [°C]	900	900	532.8	583.4
Outlet temperature [°C]	582.8	633.4	700	700
Inlet pressure [bar]	/	/	265.3	110.4
Outlet pressure [bar]	/	/	260	108.2
Mass flowrate [kg/s]	355.9	288.3	632.6	632.6

Main Components:

- Thermal receiver on top of a tower
- Heliostat field
- Particle transport system
- Thermal energy storage system

Solar Field Optimization

- DLR software HFLCAL was used to determine LCOE-optimized solar field design
- Variation of heliostat number, positions, tower height and receiver size
- Optimization for lowest LCOE

Parameter	Unit	Value
Height of receiver center above ground	[m]	133.6
Receiver aperture diameter	[m]	7.58
Mean solar flux at receiver aperture @ dp	[MW/m ²]	2.38
Heliostat aperture area (per tower)	[m ²]	170 000
Particle inventory (per tower)	[t]	5172
Field efficiency @ dp	[-]	63.6 %
Field efficiency, annual average	[-]	54.2 %
Receiver efficiency @ dp	[-]	89.7 %
Receiver efficiency, annual average	[-]	87.4 %

Heliostat field layout showing average annual efficiency per heliostat (color code)

Direct absoption particle receiver	Hot partic storage Particle/s-CO2 heat exchanger Cold partic storage Particle transport system	
Heliostat Field	Solar Tower	

Parameter	Value	Comments
Location	Postmasburg,	Good solar resource
	South Africa	
Power block net power	112.8 MW _e	Based on cycle chosen in Deliverable 1.1
Particle inlet temperature to the HX	900 °C	
Mean receiver outlet temperature @ dp	905 °C	Sufficient to reach particle inlet temperature
		to the HX
Max. particle temperature	~1000 °C	Due to inhomogeneous temperature
		distribution
Receiver inlet temperature @ dp	605.5 °C	Derived from HX design
Receiver thermal power @ dp	96.23 MW _t	Per unit
Number of towers and receivers	6	
Solar multipla		Oversizing of solar field relative to power
	2.0	plant design point thermal demand
Thermal storage capacity	12 h	hours of discharging at full load

Boundary Conditions – Particles

Category	Property	Priority	Target values
Dimensional	Shape	В	Sphericity > 0.9 (aspect ratio of maximum and minimum diameter)
			Roundness (defined sharpness of edges): as good as bauxite
	Size	В	0.3 mm - 1.19 mm (diameter range within batch impacts the cost)
Optical	Solar absorptance α	С	> 0.9 (even lower values acceptable in cavity receivers)
	Optical stability	С	Decrease in solar absorptance < 5% at T>900°C
Material	Bulk Density	А	2 g/cm ³
	Material Density ρ	А	> 3.5 ~ 4 g/cm ³
	Heat capacity c _p	A	$c_p \ge 1.5 \text{ J/(g-K)}$ between 480-900°C (only if cost is acceptable)
	Thermal conductivity	С	Al ₂ O ₃ (> 25 W/(m⋅K) at room temperature > 8 W/(m⋅K) at ≈700 °C)
Thermal	Max. operational temperature	А	Sintering- (viscous flow temperature)> 1000°C
	Phase stability	В	At T > 900°C
Mechanical	Wear/ attrition resistance	A	mass loss by attrition < 0.5 kg/MWh _{th,transferred}
	Hardness	А	900-1100 (Vickers) (bauxite reference)
	Strength	А	Breaking force > 140 N
Operational	Target lifetime	А	> 10 years
	Target operational hours	А	> 60,000 hours
	Number of cycles	А	2 per day / > 7300 total
	Maximum impact velocity	A	5m/s (falling distance 17 m (Sandia))
Economic	Cost	A	< 1€/kg for particles of c _p < 1.2J/(g⋅K) (depending on heat capacity and bulk density)

Boundary Conditions – HEX Tubes Material

Parameter	Value
Operating temperature	≥ 760°C
Internal pressure	≥ 250 bar
Strength	> 400 MPa at 23°C, > 200 MPa at 600°C, > 50 MPa at 800°C
Elongation strain to failure	> 5%
Minimum creep rate	< 10 ⁻⁶ 1/s at 200 MPa and 600-800°C
Wear by particle erosion	< 0.5% of material thickness/year
Oxidation/carburization rate	< 0.5% of material thickness/year
Lifetime	25 years

COMPASsCO₂

- \Rightarrow Non-homogeneous distribution of temperature along the most extreme tube
- \Rightarrow Angle-dependant particle heat transfer coefficient
- \Rightarrow Thermal stress

COMPASsCO₂

Boundary Conditions – HEX Tubes Material

	Alloy	Maximum Allowable Stress	Erosion	Oxidation/corrosion	Cost			
 Ferritic	P92		Promising erosion protection due to	Low protection against sCO ₂ due to	4.5-6 \$/kg			
		-	BCC and high hard phases in matrix	fast C diffusion in matrix				
	AISI441	-Only applicable at 600°C due to the low MAS		Low oxidation protection				
			Low erosion resistance	Low protection against sCO ₂ due to	5.1-6.4 \$/kg			
		values		fast C diffusion in matrix				
	316		Linknown	Low protection in case of impurities in	1.5-4 \$/kg			
	304H		UNKIOWI	sCO ₂				
	310HChN	Only applicable below 650°C due to low	Good erosion resistance due to high		3.65 \$/ka			
	3100000		hard phases in matrix	Low protection in case of impurities in	0.00 ¢/kg			
Austenitic	HR 120	W/XO		sCO ₂				
Austernite	Sanicro 25	Only applicable below 675°C due to the low	Unknown	Good oxidation protection				
	Samero 25	MAS value						
	ET 45 Micro	Potential candidate but never tested at the target conditions (good MAS and oxidation protection)						
	G4859	Manufacturing limits in order to achieve designed dimensions (lowest external diameter limit of 50mm)						
	625		Brittle at high temperatures		45.7 \$/kg			
	617B	Does not reach the MAS at 725°C by tenths	Low erosion resistance	Good oxidation and sCO ₂ protection				
	230		Maybe high W amount detrimental		52.2 \$/kg			
Ni base	282			Potential candidates according to	60 \$/kg			
	740			published literature	47.5 \$/kg			
	247	OK for 725°C and up to 760°C	Unknown	Alumina scale might be problematic at	110 0/1/2			
				such low temperatures	140 \$/Kg			
Co-base	MAR-M-509		Good in literature	Unknown				

State-of-the-art Materials Selection

Heat exchanger tube material	Material	Temperature range	Pressure limit	Selected materials	Supplier
	Creep-strength enhanced ferritic and advanced austenitic stainless steels	590°C < T < 620°C	250 bar	P92 Sanicro 25	OCAS Sanvik
	Ni-based alloys	up to 760 °C	350 bar	Haynes 282 Inconel 740 Inconel 617	Haynes Special Metals
Heat carrier particles	Material		Particle diameter		Supplier
	BL		16/30	590/1190 µm	
	BL		30/50	297/560µm	Saint-Gobain
	IP		30/50	297/560µm	Cant-Cobain
	SB		30/50	297/560µm	

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. **958418.**

COMPASSCO2 THANK YOU

