Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants (COMPASsCO₂)

COMPASsCO₂

RECEIVER TECHNOLOGY INNOVATION: LESSONS LEARNT IN THE DEVELOPMENT AND TESTING OF NEW PARTICLES

Samuel Marlin (SGCREE) Nassira Benameur (SGCREE) Ana Cleia González Alves (DLR) COMPASsCO2 Final Workshop

Back to the Future: A Forward-Thinking Approach to Concentrating Solar Technologies - Key Takeaways from the COMPASsCO, Project

April 24th, 2025 9h30 – 14h30 CEST

Structure

Review of the state-of-the-art proppants

Innovations & contributions of the COMPASsCO2 Project

- The new particles FerOx
- Coating for particles
- Testing the particles
- Simulating the particles
- Lessons learned & challenges
- Future research & innovation directions
- Questions and answers

Review of the state-of-the-art proppants

- Technology developed in frackingGenerally made of different materials
- Advantage using particles for CST
 - High chemical stability
 - High temperature resistance
 - Can be used for Heat Energy Storage

Inconvenience: Solar absorptance degradation

Samuel Marlin (SGCREE) Nassira Benameur (SGCREE) Ana Cleia González Alves (DLR)

Final COMPASsCO2 Workshop

³ COMPASsCO₂

The new particles FerOx

- Development of new particles by Saint-Gobain
 - FerOx particles made with recycled raw materials (refractory bricks + iron)
 - Size :0.6 -1.2 mm
 - Cost ≈1€/kg for <u>large volume production</u>

Particle type	State-of-the-art particles BL 16 /30	New developement FerOX particles			
Color					
Color After TT 1000°C / 24 h					
Chemistry	Al ₂ O ₃ based composition	Mix of different oxides			
Chemistry Bulk Density [g/cc]	Al ₂ O ₃ based composition 1.85	Mix of different oxides 2.00			
Chemistry Bulk Density [g/cc] ρ.Cp [kJ/m ³ .K]	Al ₂ O ₃ based composition 1.85 2146	Mix of different oxides 2.00 2200			

- Higher thermal stability
- Limited color change after heat treatment

4

Samuel Marlin (SGCREE) Nassira Benameur (SGCREE) Ana Cleia González Alves (DLR)

Final COMPASsCO2 Workshop

Coating for particles (DLR/CIEMAT/DFI)

RAM mixing

- Cu-Mn-Fe-O spinel applied in 2 layers
 with Resonance Acoustic Mixer
- Sintering at 1200°C
- Solar absorptance of 93%

- Preparation of spinels from metal salt solutions (Cu-Mn-Co-O spinel)
- Application on particles
- Thermal treatment at 1000°C (removing of solvent and additives, spinel formation)
- Solar absorptance of 97%

 Air-sprayed suspension onto particles

[SATA]

- Ethanol-based suspensions → resin, additives, hardening agent and CuCr₂O₄ black pigments
- Coating thickness: 15-40 µm
- Cured at room temperature
- Solar absorptance of 97%

Samuel Marlin (SGCREE) Nassira Benameur (SGCREE) Ana Cleia González Alves (DLR)

Final COMPASsCO2 Workshop

5 COMPASsCO₂

Test applied to particles

Characterization test

- Particle density
- Softening temperature
- Microstructures
- Optical properties
 - Solar absorptance
 - Emitance
- Mechanical properties
 - Crushing test (SGCREE)

Enviromental testing

- Humidity
 - Condesation (DLR/CIEMAT)
 - Freezing (DLR/CIEMAT)
- Temperature
 - Isothermal (DLR/CIEMAT)
 - Thermocyclic exposure (DFI)

Mechanical test

- Room temperature
 - Resonance Acoustic Mixer (DLR)
 - Particle-to-particle abrasion (CIEMAT)
- Operational temperature
 - Rotary furnace (DLR)
 - Particle impact (DLR/CIEMAT)

Testing the particles

		State of the art proppants			new developments				Coatings on FerOx				
						,	Сселона инсталование и соберение и собере	CONSTRUCTION DECHEMA PORSCHUNGSINSTITUT Stitung bürgerlichen Rechts	DLR Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center				
Property	Target values	Sintered Bauxite SB 30/50	BauxLite BL 16/30	BauxLite BL 30/50	InterProp IP 30/50	Fused Gen 1	Fused Gen 2	Granulated Gen 2	Granulated Gen 3	Granulated FerOx	CIEMAT Coating on FerOx	DECH coating on FerOx	DLR coating on FerOx
Size distribution [µm]		297-590	590-1190	297-590	297-590	800-1200	600-1200	600-1250	600-1200	600-1200	Same as Gen 4	Same as Gen 4	Same as Gen 4
Cost [€/kg]	<1	1.5	<1.5	<1.5	<1.5	5	3	3	~1.3 -1.5	~1	~0.5 - 0.75	~0.5 - 0.75	0.54
<i>c</i> _ρ at 1000°C [J/g⋅K]	>1.5	1.28	1.16	1.11	1.07	1.20		0.88	Similar to Gen2	1.1	Same as Gen 4	Same as Gen 4	Same as Gen 4
Bulk density ρ_b [g/cm ³]	>2	1.85	1.74	1.61	1.73	2.08	2.08	2.8	2.83	2.0	Same as Gen 4	Same as Gen 4	Same as Gen 4
Material density ρ_m [g/cm ³] specific /absolute	>3.5	3.3/3.45	3.06/3.42	3.12/3.26	3.16/3.34	3.47/3.53	3.32/3.39	4.71/5.07	4.92/5.04	3.56/3.76	Same as Gen 4	Same as Gen 4	Same as Gen 4
Softening temperature T_s [°C]	>900	882	857	850	856	1110	1080	1010	1080	940	Same as Gen 4	Same as Gen 4	Same as Gen 4
Vickers Hardness HV 0.1	>900	911	833	623	723	1110	988	636	704	926	Same as Gen 4	Same as Gen 4	Same as Gen 4
Breaking force <i>F</i> [N] 0.8-1.0mm	>140		141			63	98	70	90	120-140	Same as Gen 4	Same as Gen 4	Same as Gen 4
Sphericity [-] B/L (Q3=50.0 %)	as good as proppants	0.87	0.87	0.86	0.86	0.94	0.95	0.91	0.86	0.89	Same as Gen 4	Same as Gen 4	Same as Gen 4
Roundness [-]	as good as proppants	0.75	0.72	0.71	0.76	0.79	0.81	0.79	0.81	0.82	Same as Gen 4	Same as Gen 4	Same as Gen 4
Solar absorptance α [-]	>0.9	0.845	0.914	0.851	0.834	0.964	0.974	0.928	0.882	0.833	0.967	0.970	0.926
Thermal emittance ε at 900°C [-]	?	0.757	0.845	0.767	0.737	0.951	0.941	0.829	0.772	0.614	0.809	0.931	0.708
Degradation after 4000h at 1000°C													
Δα	<0.02	-0.156	-0.148	-0.091	-0.157	-0.030	-0.023	-0.002	+0.003	-0.012	-0.010	-0.016	-0.000
Δε(900°C)	<0.02	-0.293	-0.305	-0.182	-0.249	-0.104	-0.086	+0.001	-0.004	-0.106	-0.040	-0.117	+0.014

Relevance

FerOx particles have no changes on their solar absorptance

Test	DLR	CIEMAT	DFI
After coated	93.0 %	97.0 %	97.0 %
Condesation (DLR)	-0.3 %	+0.3 %	+0.5 %
Freezing (DLR)	-0.5 %	+0.4 %	+0.6 %
Isothermal (DLR)	0.0 %	-1.0 %	-1.6 %
Thermocyclic exposure (DFI)	+2.0 %	-0.5 %	-0.3 %
Resonance Acoustic Mixer (RAM) (DLR)	-1.1 %	-1.5 %	+0.3 %
Particle-to-particle abrasion (CIEMAT)	-1.1 %	-1.9 %	-1.5 %
Rotary furnace (DLR)	+0.1 %	-0.4 %	-1.8 %
Particle impact (DLR/CIEMAT)	-1.1 %	-2.0 %	-4.9 %

- Humidity does not affect the coatings
- DLR solar absorptance increase with temperature. CIEMAT and DFI are stable
- DFI has the highest solar absorptance at room temperature.
- DLR resists the mechanical interacion.
- CIEMAT has the highest solar absorptance at operational temperature.

Simulating the particles (VTT)

- Comparison between particles.
- Study of fragmentation.
- >Influence of temperature.
- >Influence of sphericity.
- Microstructure simulations.

9

Simulating the particles (VTT)

Lifetime predictions done base on Particle Crushing Test.

Lifetime calculated for the receiver's worst conditions.

Results:

- > Lifetime shows better results for BL 16/30.
- FerOx lifetime predicted to be lower than what is found in experimental impact tests

Samuel Marlin (SGCREE) Nassira Benameur (SGCREE) Ana Cleia González Alves (DLR)

Final COMPASsCO2 Workshop

Simulating the particles

- >Particle bulk simulation does not take into account roundness. Important factor.
- ➢BL 16/30 at high temperature have softer areas surrounded by hard areas → Stress concentrations.
- FerOx at high temperature have hard areas surrounded by soft areas → Better stress distribution.

The particle bulk model assumes homogeneously smooth and spherical particles.
 Improvement: better microstructural simulation & take into account sphericity

To improve the lifetime estimation, new specific test are required.

- State-of-the-art particles do not have a constant solar absorptance after the thermal test, therefore they are not optimal for application in CSP.
- FerOx particles have been selected as the best option due to their increased hardness compared to other granulated particle generations, despite the relatively lower solar absorptance.
- To improve solar absorptance, three coatings were developed by CIEMAT, DLR, and DFI. These have been proven by different tests.

Future research & innovation directions

Final COMPASsCO2 Workshop

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. **958418.**

COMPASSCO2 THANK YOU

Somuel Marin, (SGCREE) Nassira Benameur (SGCREE) Ana Cleb González Aives (DLR