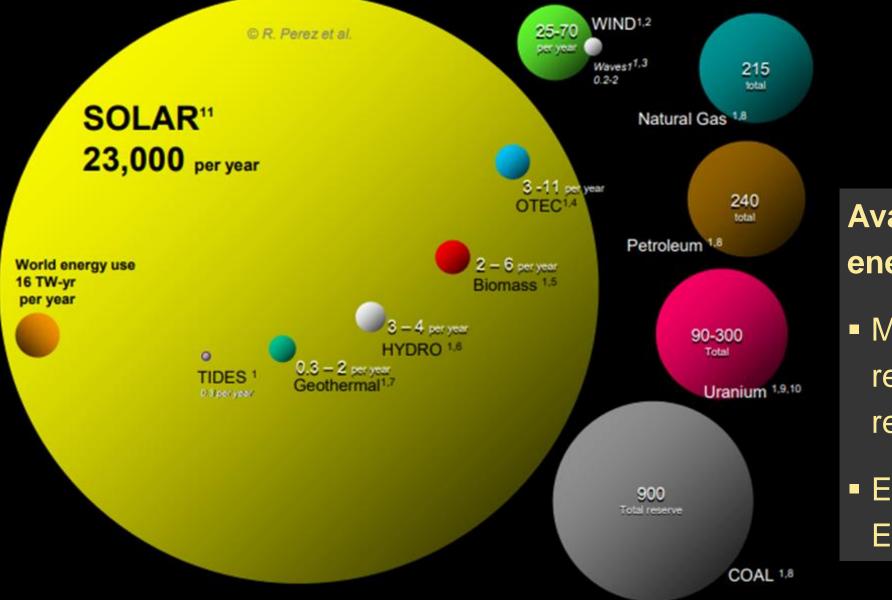
STATUS AND PERSPECTIVES OF HIGH TEMPERATURE CST SYSTEMS

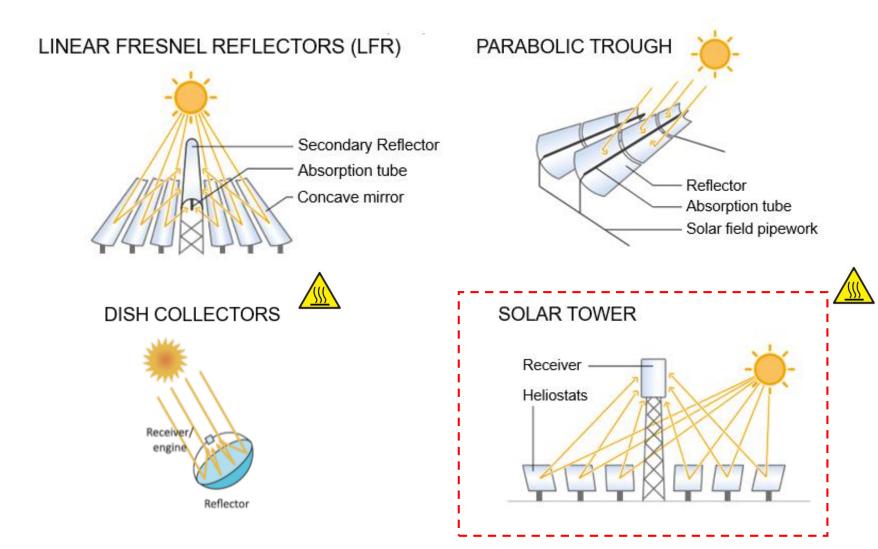
Institute of Solar Research Dr.-Ing. Luka Lackovic 24.04.2025, Final Workshop COMPASsCO₂


German Aerospace Center DLR e.V. Research Centre + Space Agency + Project Management Agency

- Europe's largest research center for aviation and space travel
- Close cooperation with science, research, business and industry
- Leading ministry BMWK, institutional funding by BMVg
- Project funding by BMI, BMDV, BMUV, BMZ, among others

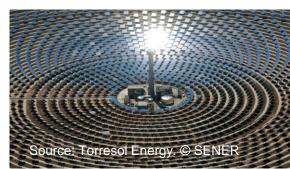
Sun: Energy for the future

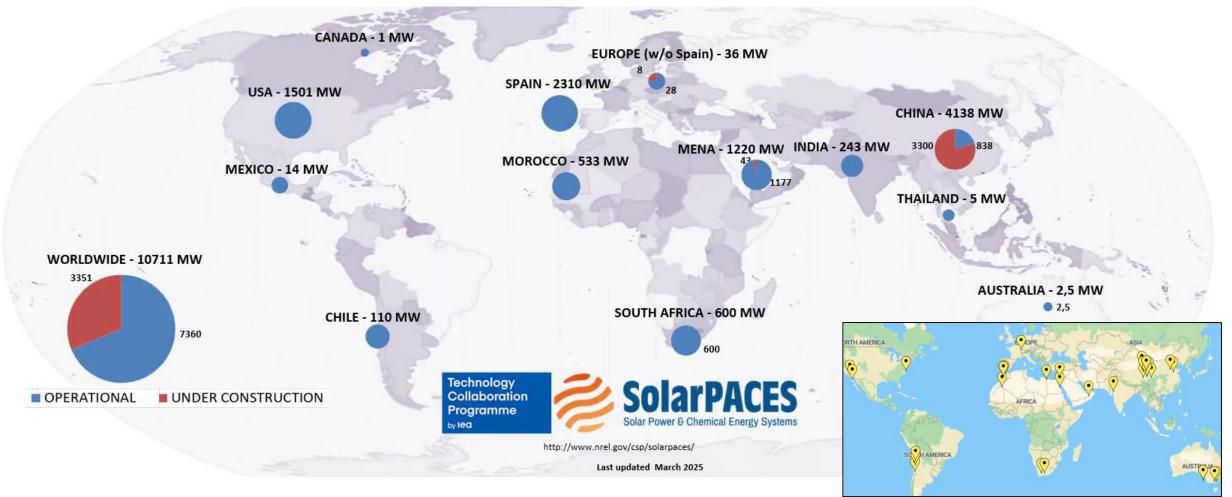
Available solar energy:


 More than 90% resources of renewable energies

Energy for 10000
 Earths

Quelle: Perez et al. (2009): A fundamental look at energy reserves for the planet. The IEA SHC Programme Solar Update, Volume 50, 2009.


CST process temperature dependency



Dr.-Ing. Luka Lackovic, DLR Institute of Solar Research, CompassCO₂ | 26.04.2025

CSP/CST Projects Around the World

China currently has the highest number of CSP/CST Projects "under development"

Dr.-Ing. Luka Lackovic, DLR Institute of Solar Research, CompassCO₂ | 26.04.2025

Tipical facilities:

- Power 50-150 MW
- Storage capacity 6-12 h
- Facilities in operation:
 - 4,8 GW Parabolic Trough oil as HTF @393°C
 - 1,3 GW Tower systems molten salt as HTF @565°C
 - Spain, USA, China, UAE, Marokko, Südafrika, ...
- \rightarrow State of the art @ CST

Applications of CST

Applications of CST Hybrid CSP-PV electricity production: Saudi Arabia (DEWA)

Source: Acwa Power

DEWA plant (United Arab Emirates)

Combination of different technologies.

- 3 x 200 MWel Parabolic Trough
- 100 MWel Solar Tower, both with molten salt storage for power generation at night
- Additional 250 MWel PV for direct generation during daytime

Installations in China

- A number of hybrid plants with hybridization ratio 1:6 or 1:9 with PV/wind are being build.
- Further projects up to 5 GW in the next 5 years in planning

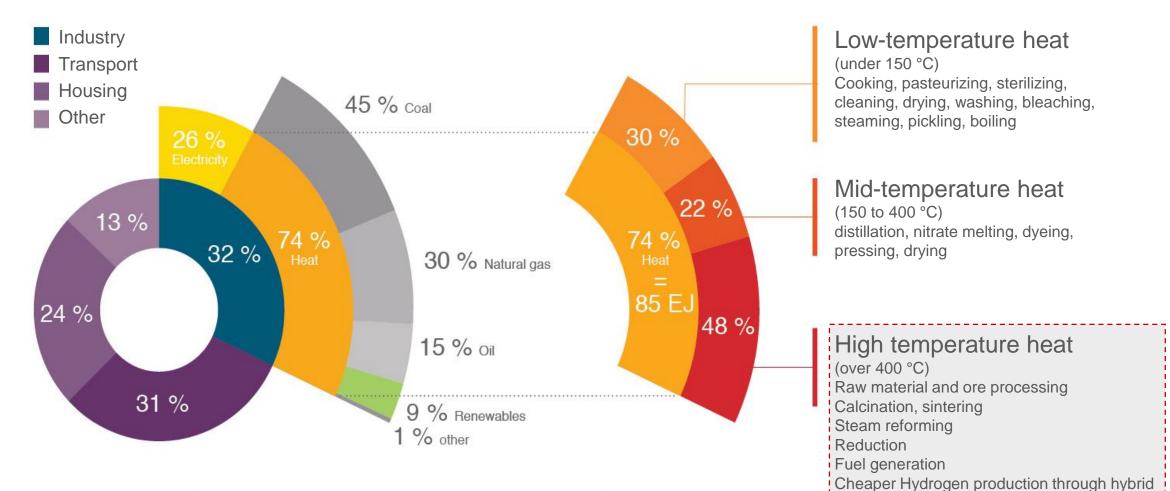
Solar power plant NOOR III (Marokko)

Installed capacity (in Mw_{el})

Power generation after sundown (in hours)

The NOORo III solar power plant near Ouarzazate (Morocco), photographed from an airplane on April 1, 2017, Source: dpa-Bildfunk.

Solar thermal power generation (CSP) Market size and current status



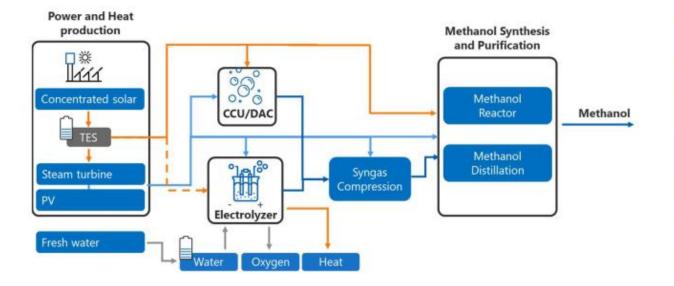
- 2023 worldwide installed renewable capacity: 4 TW → 7 GW CSP
- CSP will reach 48 GW by 2030 and 427 GW by 2050 (IEA Forecast)
- Asia pacific dominated the global market share (44%) in 2024
- Hybrid CSP-PV is cost-competitive for night power supply > 5h
- Parabolic trough had the biggest market share in 2024, but solar tower is estimated to increase market gain → production of HT process heat 24/7
- Investment costs:
 - CSP costs dropped by 58% in 2010-2022 to USD 4274/kW $_{\mbox{\tiny (IRENA 2024a)}}$
 - Solar towers were 37% more expensive than parabolic trough plants in 2023
 - However, tower systems costs dropped by 45% between 2011 and 2024

Process heat: heat consumption in the industrial sector

Sulphur cycle

Final energy consumption of heat in the industrial sector. Source: Epp (2017) based on data from IEA, IRENA

Dr.-Ing. Luka Lackovic, DLR Institute of Solar Research, CompassCO₂ | 26.04.2025


Applications of CST Renewable Fuel Production, hydrogen, drying...

- Examples:
 - Methanol production powered by a CSP/PV hybrid system
 - Hydrogen production from electrolysis and high temperature electrolysis
 - Ammonia production power by CST
 - Phosphate drying with solar heated air and long distance transport with particles
 - Chemical processes in solar heated receivers, e.g. heat for syngas
- → Plants preferably located in sunny regions. Products to be imported to Europe.

Applications of CST (1) Combined heat and power supply for solar methanol production (Source: Fichtner)

- First demonstration project (SM1/SA Solar Fuels) under development, supported by the Federal Ministry of Education and Research (BMBF) and the Australian Renewable Energy Agency (ARENA) under the HYGATE initiative.
- Key partners: Mabanaft, Deutsches Zentrum f
 ür Luft-und Raumfahrt e.V., Vast and CSIRO

Demo plant to be constructed in Australia next to Vast's VS 1 Project – target 7,500 t p.a. of methanol

Dr.-Ing. Luka Lackovic, DLR Institute of Solar Research, CompassCO₂ | 26.04.2025

Source: Vast Energy

Applications of CST (2) Cooperation DLR with Synhelion SA: syngas production

Milestones

2019 Test of the new technology in the Synlight high-performance artificial sun facility

2022 First production of syngas at DLR's multifocus tower

2023 World's first industrial plant at Brainergy Park Jülich

- In 2021, Synhelion merged with the DLR spin-off HelioKon
- Synhelion SA is a pioneer in the solar production of synthetic fuels
- World's first industrial-scale solar fuel plant

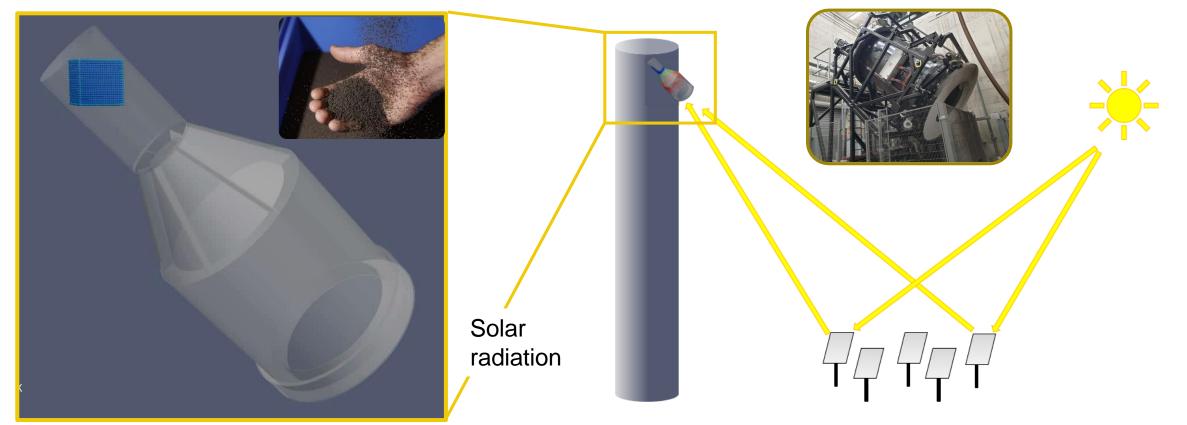
Comparison of CSP technologies using different heattransfer (storage) media

Ho et al., Overview and design basis for the Gen 3 Particle Pilot Plant (G3P3); AIP conference Proceedings 2303 (2020)

Feature	Solid Particle Technology	Molten Nitrate Salt Technology	Molten Chloride Salt Technology	Gas Receiver Technology
Operating temperatures	Ambient to >1000°C	~300°C – 600°C	~400°C – 800°C	Ambient to >1000°C
Solar flux	No flux limitations on particles	Limited to tube-wall fluxes of 800-1200 kW/m2	Limited to tube-wall fluxes of 800-1200 kW/m2	Limited to tube-wall fluxes of 800 kW/m2 or less
Freezing	No freezing	Freezing below 200 – 300 °C; requires trace heating	Freezing below 200 – 300 °C; requires trace heating	No freezing
Corrosion	Inert materials, non corrosive	Corrosive to the containment materials	Extremely corrosive to the containment materials in the presence of air or water	Potentially corrosive depending on gas
Storage	Direct thermal storage	Direct thermal storage	Direct thermal storage	No direct thermal storage; requires intermediate heat exchanger
Ducting and containment	No hermetic seals required	Hermetic seals required	Hermetic seals required	Hermetic seals required
Conveyance	Particle lift (bucket elevator or skip hoist)	Long-shafted pumps	Long-shafted pumps	High-temperature blowers; lifts for particles if used as storage media

Dr.-Ing. Luka Lackovic, DLR Institute of Solar Research, CompassCO2 | 26.04.2025

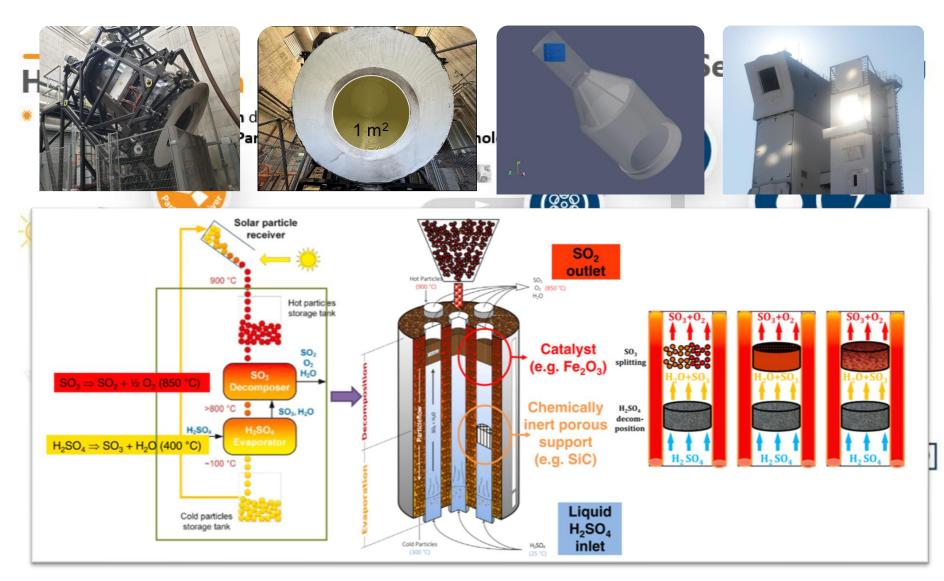
Comparison of CSP technologies using different heattransfer (storage) media


Ho et al., Overview and design basis for the Gen 3 Particle Pilot Plant (G3P3); AIP conference Proceedings 2303 (2020)

Feature	Solid Particle Technology	Molten Nitrate Salt Technology	Molten Chloride Salt Technology	Gas Receiver Technology
Operating temperatures	Ambient to >1000°C	~300°C – 600°C	~400°C – 800°C	Ambient to >1000°C
Solar flux	No flux limitations on particles	Limited to tube-wall fluxes of 800-1200 kW/m2	Limited to tube-wall fluxes of 800-1200 kW/m2	Limited to tube-wall fluxes of 800 kW/m2 or less
Freezing	No freezing	Freezing below 200 – 300 °C; requires trace heating	Freezing below 200 – 300 °C; requires trace heating	No freezing
Corrosion	<mark>Inert materials, non</mark> corrosive	Corrosive to the containment materials	Extremely corrosive to the containment materials in the presence of air or water	Potentially corrosive depending on gas
Storage	Direct thermal storage	Direct thermal storage	Direct thermal storage	No direct thermal storage; requires intermediate heat exchanger
Ducting and containment	No hermetic seals required	Hermetic seals required	Hermetic seals required	Hermetic seals required
Conveyance	Particle lift (bucket elevator or skip hoist)	Long-shafted pumps	Long-shafted pumps	High-temperature blowers; lifts for particles if used as storage media

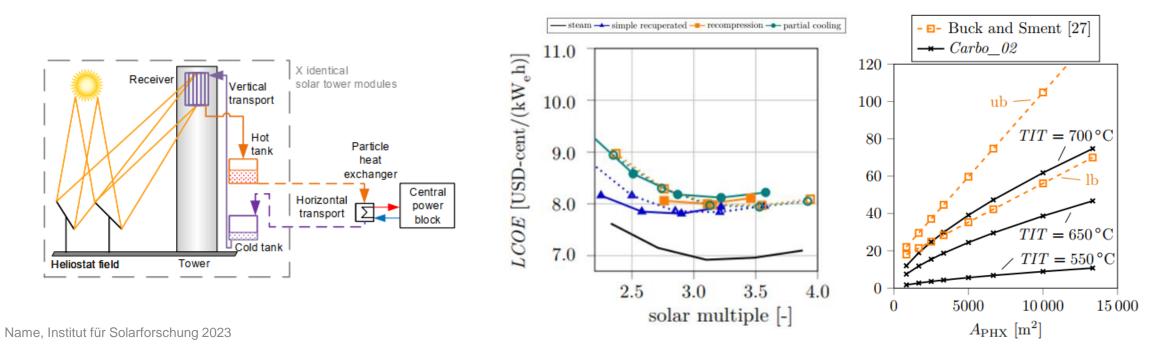
Dr.-Ing. Luka Lackovic, DLR Institute of Solar Research, CompassCO₂ | 26.04.2025

Component development CentRec[®] Solar particle receiver



- Control of particle residence time by adjusting the rotation speed
- Thin, optically dense layer for all load conditions
- Patented DLR technology

Applications of CST (3) CST particle technology @ 900°C: EU HySelect



- Objective: Production of H₂ through the Hybrid Sulphur cycle using Particle CST (CentRec[®])
- Process heat supply @ 900°C
- Industry partner: Grillo-Werke AG (liquid Sulphur dioxide)

Carbosola Project Supercritical CO2 (sCO2) power cycles with particles

- detailed techno-economic comparison is needed to assess potential benefits over state-of-the-art steam cycles → comparison of particle based solar tower systems with sCO2 cycles with ref.
- hourly simulations to derive the plants' annual energy yields and levelized cost of electricity
- levelized cost of any sCO2 process is at least 9 % higher than that of the reference system (steam)
- two TIT levels (550°C and 650°C lowest LCOE), 112 MWe, location in SA

Outlook High temperature CST systems

- Strategy: 24/7 heat supply for the industry (Hydrogen, Methanol, Drying...)
- Adjustable hybrid systems with PV and HTHP
- Waste heat from industrial processes for district heating
- Decarbonization of materials and chemical products (>700°C)
 - Cement, clay activation, calcination
 - Steel
 - Ore drying
- Power2Heat with Sustainable energy particle storage
 - Low-cost heat storage systems with large capacity
 - High temperature process with lower CAPEX costs

THANK YOU FOR YOUR ATTENTION!